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Abstract— Data analytics is increasingly becoming recognized 
as a valuable set of tools and techniques for improving 
performance in the manufacturing enterprise. However, data 
analytics requires data and a lack of useful and usable data has 
become an impediment to research in data analytics. In this 
paper, we describe issues that would help aid data availability 
including data quality, reliability, efficiency, and formats 
specific to data analytics in manufacturing. To encourage data 
availability, we present recommendations and requirements to 
guide future data contributions. We also describe the need for 
data for challenge problems in data analytics. A better 
understanding of these needs, recommendations, and 
requirements may improve the ability of researchers and other 
practitioners to improve research and more rapidly deploy 
data analytics in manufacturing. 
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I.  INTRODUCTION 
Data analytics for the purpose of improving performance 

in the manufacturing enterprise is becoming increasingly 
attractive for manufacturers. This is motivated by several 
factors. First, “big data” characteristics (increasing volume, 
velocity, veracity, variety, and complexity) from models, 
sensors, etc., enables new approaches (e.g., algorithmic, 
visualization) that produce novel conclusions. These novel 
conclusions lead to a second factor -- an increasingly 
competitive environment. Manufacturers who do not use 
data analytics will not be competitive with manufacturers 
who do [1]. Competition can drive prices down, increasing 
costs for resources and additional regulation provides an 
additional factor for finding savings wherever possible. 
Thus, data analytics can be expected to play a critical role in 
smart manufacturing in the future. 

While papers and books describe the promise and some 
successes of data analytics, few real-world descriptions of 
the difficulties, challenges, and pitfalls exist [2]. Data 
analytics is not a cookbook science. Granted, one can find 
plenty of papers describing success; one can find papers 
describing methodologies and models; and one can find 
papers comparing algorithms. However, in our literature 
search, we could not find papers specific enough to guide 
anyone through the complete process of deploying data 
analytics. Each enterprise traditionally makes its own 

decisions about what data are important and how these data 
should be stored and analyzed. 

Complexities exist for many reasons such as uniqueness 
and diversity of manufacturing enterprises and goals, lack of 
standards or in some cases, multiple standards without 
compatibility. Work on these areas is hindered by a lack of 
widely-recognized challenge problems in data analytics for 
manufacturing applications. These problems must be 
meaningful and find wide acceptance by researchers across 
many fields and industries such that progress is possible in 
reasonable timeframes. Underpinning all of these is a 
corresponding need for real data. By its very essence, data 
analytics cannot function without data. For the same reason, 
research into data analytics also requires data. 

The National Institute of Standards and Technology 
(NIST) is researching data analytics to support U.S. 
manufacturing. However, NIST is not a manufacturer and 
has no direct access to the amounts and types of big data that 
forms the basis for most of our research into data analytics 
[3][4]. NIST has therefore had to rely on industrial partners 
for data. Unfortunately, these data are often problematic in a 
number of ways which in turn impedes the research. In our 
own work, we have faced significant issues dealing with 
contributed data and had to expend significant time resolving 
these issues due to the lack of relevant guidelines for data 
acquisition, types of data, and the volume of data. This is the 
motivation and source for much of this paper. 

This paper discusses the complexities of producing 
usable manufacturing data. The paper also provides 
recommendations on what can be done to 1) produce more 
data that will help researchers (such as NIST and academia) 
of data analytics in smart manufacturing, and 2) help 
manufacturers that want to supply their data to researchers. 
We describe the types and qualities of data needed. We 
describe other attributes of significance. We also describe the 
reliance that many researchers have on industry data, why 
this reliance presents difficulties, and suggestions on how 
these difficulties can be ameliorated. At the very least, we 
need to understand how critical data is to our current state of 
the art of data analytics. In that sense, we believe that our 
thoughts, observations, and recommendations in this paper 
may be helpful as guidance and toward stimulating further 
discussion. 

While our own interest stems from manufacturing issues, 
that is not intended to limit applicability of this paper. 



Readers may find that much of our discussion is widely 
applicable to other domains. 

II. DATA AVAILABILITY ISSUES AND 
RECOMMENDATIONS 

Deciding what data to collect, how to collect, and how 
much to collect is a significant challenge. Such decisions 
include the source of data and their type, location, and 
frequency. Each of these may have additional complexities. 
For example, locations may change manually or 
automatically. Sensors may be mobile - for example, on-
transport devices or in-process parts. It may be of value to 
measure all parts or just a percentage and frequency may be 
regularly periodic or event-driven. Each of these issues has 
further ramifications. For example, using data from multiple 
sources can be difficult when the sources are unsynchronized 
or use different output formats. This “data fusion” cuts 
across many of the issues we describe. 

This section of the paper describes issues and potential 
recommendations that we are considering.  

A. Data Use Restrictions 
We recognize that there may be restrictions on the way 

certain data are used. While this may not be true in an 
experimental test environment, at a certain point, we want to 
reflect real world concerns. Restrictions arise in several ways 
that are further described here. 

1) Proprietary Data 
Significant amounts of data exist but are inaccessible to 

researchers as the data are proprietary. Many companies 
collect such data but only make it available internally or to a 
limited set of partners with confidentiality agreements. 

The problem of proprietary data includes both generated 
(for example, from sensors) and intrinsic data. For example, 
the manufacturer of a milling machine may decline to 
provide data describing speed and torque relationships. 
Possibly, the manufacturer may not even have the kind of 
comprehensive data that researchers want. Manufacturers 
may have models and other descriptions of their products to 
the extent needed for their own manufacturing purposes but 
may be unwilling to release the data. 

The unwillingness, for example, of machine tool 
manufacturers to share data is understandable. Models and 
performance data can be used by competitors to improve 
their own manufacturing processes and products. While the 
very largest buyers of such equipment may have the leverage 
to access (or can afford to pay for) proprietary information, it 
is inaccessible to the majority - especially to mid- and small-
size manufacturers.  

Without this proprietary information, researchers are left 
to make sample parts and carry out onerous experiments and 
measurements, all for limited purposes. With limited 
resources, many assumptions must be made since these 
experiments involve physical operations rather than virtual 
simulation. For this reason, we are left with researchers 
proposing equipment and other manufacturing decisions that 
are far from optimal despite the possibility of significant 
improvements with access to proprietary data. 

Although we could recommend that equipment 
manufacturers make as much of their data as possible 
available to enable and encourage researchers, this statement 
is too vague. It may be more useful for them to, for example, 
make available complete data for a machine that is no longer 
sold but nonetheless widely used. Similarly, manufacturers 
can release data for manufactured products or process plans 
that are no longer used or critically proprietary. 

2) Data Security 
To thwart corporate espionage or even inadvertent data 

leaks, data at all levels must be protected. Traditionally, any 
user or application behind a firewall can access any and all 
data. For enhanced security, it is becoming common to 
compartmentalize access on a need-to-know basis [5]. This 
not only requires justification and requests, but also time 
limits.  This can be problematic since need-to-know and on-
demand philosophies conflict with the ability of algorithms 
that expect open access to all data. In part, this is because the 
algorithms themselves may not know in advance what data 
they need to explore.  

This problem is exacerbated by the use and number of 
suppliers, shippers, and other external parties in the supply 
chain. These parties will likely not allow access to their 
internal data except in extremely limited ways.  This 
significantly limits the types of, and the extent of both data 
discovery and analytics that can take place. In short, the 
traditional benefits of using third parties to gain efficiency 
and cost advantages are offset by these data-access issues 
and the less-than-optimal decisions that result.  

Infrastructure deemed critical refers to elements crucial 
to such issues as national economic security, economic 
viability, and public safety. These may include both long-
term and short-term issues that arise from deliberate attacks 
or disruptions from natural events [6]. One important 
strategy to provide security is to reduce risk by minimizing 
access. From a security perspective, the more that access is 
restricted, the more likely it will achieve the goals of 
reducing risk and defending infrastructure. Restrictive access 
thwarts data analytics where the more expansive and ready 
access to data, the more likely it will be possible to detect 
previously unknown patterns and conclusions from massive 
quantities of seemingly unrelated data.  

Encryption may be used to shield data from inappropriate 
consumers. This introduces drawbacks such as extra 
processing which could be difficult at low levels with limited 
processing power. Encrypted data also generally take more 
space both during transmission and when resident. Finally, 
encryption provides yet another opportunity for data leakage 
as encryption keys provide another attack surface [7]. 
However, encryption may be useful when sharing data in a 
scenario that does not require real-time access. Many 
encryption variants exist. For example, homomorphic 
encryption allows computations directly on encrypted data. 
Decryption can be done at a later time in a secure 
environment and the result will match the results that would 
have occurred had the data analytics been done on the 
unencrypted data [8]. 

Data producers may find it useful to digitally sign data as 
proof of provenance and that the data have not been changed. 



This latter can be useful as researchers want to be able to 
replicate results of others or want to assert improved results 
on the same body of data. Digital signatures can also be used 
with public-key encryption so that only partners with 
corresponding private keys can read the data. 

Security-related recommendations for improving access 
to data do not generalize widely. We can only raise 
awareness of the tradeoffs. 

B. Non-Existent or Missing Data 
In some areas, data may not exist for a variety of reasons. 

Examples: Data may be too expensive to capture – installing 
sensors or buying models may cost more than the expected 
benefit. It may be impossible to capture data that are internal 
to a sealed system. A KPI (Key Performance Indicator) may 
be unavailable if it is too new or vaguely defined. Sensors, 
communications, or a database may have failed in a run that 
is too expensive to repeat. 

Such non-existence of data, while frustrating, occurs in 
real scenarios. Sensors don’t always work. Databases don’t 
always record. For a variety of other reasons, it may be 
impossible to obtain data. 

Workarounds include the use of simulated data, reference 
data, and reasoning techniques [9][10][11]. Simulated data 
are generated by models and algorithms rather than 
measured in situ. Reference data are any data acquired 
second-hand. Reference data can derive from a wide-variety 
of sources (design goals, for instance) as well as measured. 
However, while reference data are ideal in theory, it is rare to 
find different manufacturers who have identical independent 
variables in their manufacturing systems except in very 
simple processing. Even manufacturing operations of 
commodity items generally vary widely among 
manufacturers. Lastly, reasoning techniques such as 
Bayesian networks may provide suitable workarounds to 
address missing data. 

C. Data Timing and Synchronization 
Synchronization of data is a significant problem in 

several ways. An enterprise typically has many producers of 
information. To make use of such information from multiple 
sources, it is necessary to understand when that information 
was created. This is more difficult than simply timestamping 
data from a central time server. 

Consider a sensor on a machine tool that is reporting 
force data. It is necessary to understand how this correlates 
with machining operations. Operations can be viewed as a 
hierarchy with a process plan at a high level and machine 
instructions describing speed and position at a low level. 

There are two significant issues: synchrony of sensor 
timing, and synchrony of processing steps. 

First, timing chips, while inexpensive, are not a part of 
many sensors [12]. The resulting data are unsynchronized or 
require retroactive synchronization to deal with relative 
timestamps. Absolute timing adds cost. While central-time 
service distribution is achievable, adding this functionality to 
all sensors increases costs. This is especially problematic 
because there will typically be hundreds of sensors in a work 
cell, and many thousands throughout a factory. Relative 

synchronization is cheaper but is non-trivial. A priori 
synchronization is not trivial nor is adding timestamps at a 
later stage (for example by an MTConnect-aware server that 
sends the results back to the database), which generally adds 
latency resulting in inconsistent time lags.   

Second, processing steps are typically hidden inside the 
processing elements of a machine tool, and can be 
inaccessible to the external world. This makes it difficult to 
correlate these processing steps to sensor measurements. 
Even if these steps are known (for example from 
experimentation), there can be indefinite latency since 
operations and algorithms inside commercial controllers are 
proprietary and not intended to be examined nor guaranteed. 
This latency introduces mismatches between low-level data, 
making certain types of data analytics impossible or 
introducing a significant amount of uncertainty.  

Most of what is available today are unsynchronized 
sensor data. We believe that many sensor manufacturers or 
integrators simply don't view this type of synchronization as 
a requirement. Hence it remains a challenge for researchers. 

Recommending that all sensors and machine tool 
internals include absolute timing circuitry is simple but 
unrealistic. Instead, we recommend that such information be 
tagged at the lowest level possible with absolute timing 
information with millisecond precision or, if possible, sub-
millisecond. Timestamps must be in a format that is directly 
machine processable such as ISO (International Organization 
for Standardization) 8601 [13]. Timings that are known or 
likely to be affected by lag should be tagged as such. This 
should include a measurement or estimate and probability of 
the lag. 

D. Data Frequency 
During manufacturing, there is a tradeoff over the 

frequency with which data are collected. While it is intuitive 
that additional data can lead to detection of additional 
patterns, increased accuracy, and the potential for otherwise 
undiscoverable insights, additional data also have costs. 

Increased data means increased cost of processing time, 
data storage, access, network traffic, and database 
contention. Synchrony (see above) and the cost and accuracy 
of interpolation are also a concern as is algorithm 
performance. While an increase in data can lead to better 
results, algorithms will invariably take more time. Data 
mining algorithms already use heuristics to trade off 
exponential performance for suboptimal results so 
unnecessary data only leads to further deteriorating 
performance. This is especially problematic when it impedes 
the ability to draw conclusions and to make adjustments to 
processes in real-time. 

One argument for collecting more data is that it is 
simpler. No knowledge is needed on how to pass judgment 
on data. So immediately after having taken and handed off a 
measurement, the sensor begins the cycle again with no 
waiting for any kind of clock cycle. Of course throttling may 
be induced indirectly. For example, the network may be 
incapable of absorbing data at the rate at which the sensor 
sends it. The database may not be fast enough. The 
architecture stack may induce throttling at many different 



levels. Whether this throttling occurs directly (planned 
throttling) or indirectly is a significant concern. For example, 
if a database is thrashing due to the amount of data it 
receives or from demands by the analytics algorithms, gaps 
that appear between batches in the data may be large, 
causing poor performance of algorithms - as if less data were 
collected than actually was [14]. Understanding and 
managing these tradeoffs is beset by subtle choices and risks.  

During research or pre-production, the problem of excess 
data is ameliorated to an extent. For example, real-time 
performance may be unnecessary. However, badly 
performing algorithms are still at risk with even minor 
increases in data size. And data mining by its very nature 
involves exploring data for unexpected results. Therefore, 
more data are better. However, not all data are of equal 
value. Being able to “help” algorithms by withholding data is 
a challenge. A related issue is that some algorithms perform 
worse with additional data. For example, for certain 
machine-learning algorithms, increasing the training set size 
can produce outputs that are inferior to those of smaller 
training set sizes. While this phenomenon is data dependent, 
it is a significant concern since this runs counter to expected 
outcomes that suggest more data are better [15]. This arises 
with other algorithms as well such as overfitting in neural 
network training. And, in practical terms, the world is 
moving to essentially unlimited data so this question of data 
size arises frequently. 

The goal of replacing unlimited big data with limited 
ideal data is often called the “smart data” problem. However, 
it remains an open problem [16]. For now, we are stuck 
requiring, generating, storing, and analyzing “big data.” 

To assist with the problem of frequency, we recommend 
that data publishers produce two sets of data in situations 
where frequency is an issue. One set should be a complete 
set with all measurements. A second set should be limited to 
a more realistically representative amount that would 
normally be available in production. Additional sets may be 
provided as supplements but should be marked appropriately 
- for example, indicating extra sensors are used that would 
not normally be available. 

E. Data Formats, Standards, and Specifications 
Enterprises sit atop a vast collection of disparate data, 

often produced by a multitude of heterogeneous sensors, and 
often ultimately stored in files formatted according to a 
variety of standards, with varying degrees of compliance. 
Significant amounts of data may follow no standards 
whatsoever. Using standard specifications such as XML 
(eXtensible Markup Language) and JSON (JavaScript Object 
Notation) can help [17]. However, problems such as 
underspecification can remain that leave ambiguities. For 
example, using an XML attribute called “time” means little if 
there is no definition for how the string is to be interpreted -- 
absolute with respect to UTC (Coordinated Universal Time) 
or local time zone? Relative to what -- start of a process or 
something else? 

While standards can be helpful, they are not panaceas. 
For example, equipment and software from different vendors 
may use different standards. Data, while still standard-

compliant, can lose fidelity during interchange. Standards 
frequently have different levels of compliance that users may 
choose from. Even highly specific standards do not 
guarantee data that are usable. For example, the machine tool 
standard, MTConnect, covers only one direction of 
communication; so, correlation to commands may not be 
present or need reconstruction with timing uncertainties. 
Equally important, MTConnect does not cover all possible 
types of data that a machine tool can generate [18]. For 
example, MTConnect defines a fixed set of statistics for 
DataItems. Kurtosis, a measure of peakedness relative to a 
normal distribution, is in the set. Skewness, a measure of 
symmetry, is not in the set. 

All of these choices have reasons for existence. For 
example, different vendors may have different reasons for 
their choices. These can include historical issues, expense in 
tracking developing standards, and interactions with other 
software. For example, the choice of OWL (Web Ontology 
Language) variants depends on how much need there is for 
expressiveness – the breadth of concepts that can be 
represented. But greater expressiveness brings with it a loss 
of computational guarantees [19].  

Data standards may be descriptive (describing practices) 
or prescriptive (defining practices). Each carries with it 
downsides. For example, descriptive standards may prevent 
the use of innovative techniques that are too new to be 
incorporated in standards while prescriptive standards may 
be ignored when better technology solutions are discovered. 
These dilemmas are particularly apparent in rapidly changing 
and highly-competitive fields. To allow variations and 
technological advances, some standards intentionally leave 
areas of ambiguity with a resulting ambiguity in the data. 

Some standards and specifications have been created to 
help with the issues mentioned in this section, such as 
PMML (Predictive Model Markup Language) and PFA 
(Portable Format for Analytics) [20][21]. For example, 
PMML and PFA can specify time offsets or transformations 
such as normalization. 

We recommend that well-recognized standards be used at 
every level of data formatting and description. Metadata 
should be supplied to describe data formats and meaning. 
Proprietary and ad hoc standards should be avoided except 
when necessary. Standards and specifications such as PMML 
and PFA should be used instead of ad hoc programming 
language solutions to deal with likely conversion issues. 

F. Data Uncertainty and Reliability 
Enterprise data can have all the characteristics common 

to any collection of big data. These include uncertainty, 
reliability, and accuracy, among others. It is important that 
data collections address these types of characteristics in a 
realistic way. 

Some of these characteristics should be dealt with by 
providing the appropriate metadata (data describing data). 
For example, uncertainty that is quantified should be 
expressed in metadata included with the data. In some cases, 
however, uncertainty may be unknown a priori and it is the 
task of the data analyst to deduce the uncertainty during the 



analytics process. As in the former case, the latter possibility 
can and should be expressed in the metadata. 

In the general sense, problematic data presents several 
choices. It is tempting to cull data before publishing. It may 
be similarly tempting to artificially induce problematic data 
whether programmatically or physically – such as by using 
an intentionally faulty or broken sensor. No matter which of 
these approaches are taken, metadata must indicate what is 
known about the data. 

When there has been modification of data (removal, 
normalization, etc.), we recommend that multiple data sets 
be made available corresponding to the original and the 
modified data.  

G. Data Access, Storage, and Processing 
Data access and availability impact data analytics. In 

even simple cases, data is structurally changed when it is 
distributed to researchers. For example, distribution 
traditionally has meant serialization. However, this raises 
issues of how de-serialized data are intended to be stored and 
accessed. Alternatively, researchers might have direct access 
to the database of a producer, perhaps because the producer 
is generating information in real-time or, more commonly, 
because the data set size is extremely large and researchers 
only need access to a relatively small portion. 

Our estimates of a small manufacturing shop scenario 
with a modest number of machine tools using Hadoop/Hive 
technology could generate daily data of 1 TB (25 MB/sec) 
based on 500 K/day sensor readings at 50 KB/reading with 
database overhead, data normalization, and other issues. 
With replication, compression, and caching for 250 
workdays/year, this approaches 1 PB required to retain a 
year’s worth of data. Our estimates may soon be seen as 
conservative given that the cost to store data continues to 
decrease and the ability to generate data continues to 
increase.  

Data may be converted to an entirely different database 
type by, in essence, changing the solution. Data storage 
choices are significant since different database technologies 
have different strengths and weaknesses. For example, 
highly-regular relational data are optimally stored in a 
relational database. In contrast, data that are predominantly 
hierarchical such as geospatial (e.g., factory floor map) incur 
a significant extra expense when stored relationally. Another 
example is that a fixed data schema can significantly 
improve the performance of data mining by reducing the 
time to access data. In contrast, more agile databases have 
the flexibility to store new data types but only by increasing 
the expense of access. 

A related problem is that some enterprises have limited 
database expertise with the result that inferior database 
solutions are employed. For example, data may not be 
normalized so data are redundant, contain inconsistencies, 
lack connections, etc. While this might not be a problem for 
ad hoc in-house use, distributing such databases causes 
significant and unnecessary extra effort and frustration. 

More sophisticated enterprises will use multiple 
databases. Different machines, different caching, different 
bandwidths all affect availability. For example, joins within a 

database are generally easy; joins across databases on 
multiple machine often incur significant expenses. However,  
multiple databases are a more realistic portrayal of enterprise 
data since they can simplify the problems of rapidly 
changing applications and data analytics demands. This 
contrasts with traditional data distribution using a single file, 
however large. 

We mentioned earlier that databases might process data 
before storage. As processing elements become increasingly 
powerful, it is common to find databases at the lower levels 
of the enterprise with sophisticated operations and storage 
capacities. Such low-level databases can be used to address 
certain problems such as avoiding network overload by only 
sending up significant results rather than raw data. We have 
hypothesized that stored programs may also be used to solve 
security issues noted earlier (see Proprietary Data) in that 
processing takes place inside of a controlled proprietary 
environment so that results are returned without exposing 
raw data [21]. However, we have not seen any evidence of 
this in practice and remain skeptical of it as a workable 
technique. Nonetheless, the use of low-level processing in 
general can have the inadvertent effect of making data 
availability less likely. 

Multiple researchers who maintain the same data in 
different ways may be solving different problems. Therefore, 
we recommend that data sets identify how they are 
nominally intended to be accessed and, if necessary, stored. 
Researchers who opt to use different techniques should state 
those differences when releasing results so it is clearer when 
comparisons are being made using different access and 
storage technology as well as other aspects of the research. 

H. Data Preparation Time and Other Resources 
Assuming a manufacturer is supportive of releasing data, 

the time and effort required can be substantial. The potential 
for unaffordability can be a reason to prevent the release of 
data. 

We have already mentioned many categories of issues. 
Each of these takes time. For example, a manufacturer must 
take the time to decide what is proprietary and what is not 
and how to separate them. Decisions may change due to 
multiple influences. For example, sensor measurements that 
may initially seem distributable may “give away” too much 
information if taken at a much higher frequency or with 
greater accuracy. 

Having engineers devote limited time to selecting 
database fields, formatting and packaging data, finding a 
suitable repository, keeping it updated, and creating data 
descriptions, can be difficult to justify if it does not 
immediately feed back to the corporate bottom line. 
Similarly, legal requirements and concerns may force the use 
of additional resources, for example, for non-disclosure 
agreements that may vary across consumers and data sets. 

We recommend that, before embarking on data 
distribution projects, manufacturers create a budget that 
incorporates all aspects of time and resources that will be 
needed. This not only protects a company from unwelcome 
surprises but is more likely to lead to a careful and useful 
release of data that can be sustained in the future. 



III. CATEGORIES OF DATA 

A. Application Domains 
It is important to understand the categories of data that 

exist in an enterprise so that data may be properly acquired 
and used for the purpose of data analytics. We are in the 
process of enumerating a comprehensive list of application 
domains and needs of manufacturing. This section describes 
a few examples to show the general idea. 

1) Supply-Chain Management Data 
Supply-chain data include product types, scheduling, 

risks, cost accounting, efficiency, sustainability, and other 
factors. Many of these may include choices, for example 
between multiple suppliers or products and tradeoffs. Single-
supplier, single-product data sets are useful but only for very 
limited purposes. 

Access to these kinds of data would allow investigations 
into problems such as maximizing responsiveness to change, 
minimizing inventory and energy use, and balancing cost vs 
critical dependencies. 

2) Production Scheduling Data 
Production scheduling data include performance criteria, 

product data, work cell models, and resource descriptions. 
Data should include a variety of generated schedules under 
stated conditions (for example, fixed maximum total time or 
minimizing total time needed) and computed outputs (such 
as energy used, time expended, and other KPIs). 

Access to these kinds of data would allow investigations 
into production efficiency, load leveling, dynamic 
rescheduling, and trade-offs such as inventory reduction vs 
total production throughput.  

3) Process Planning Data 
Process planning data include product data, resource 

descriptions, and fabrication techniques. Data should include 
a variety of process plans under stated conditions (for 
example, fixed maximum total time or minimizing total time 
needed) and output (such as energy used, time expended, and 
other KPIs). 

Access to these kinds of data would allow investigations 
into work cell efficiency and trade-offs such as energy vs 
manufacturing time vs throughput. 

4) Machine Tool Data 
Machine tool data include tool models, energy, 

reliability, and tool wear. Data should describe a variety of 
raw materials, processes, tools, and outputs such as energy 
use, time expended and other KPIs). 

Access to these kinds of data would allow investigations 
into comparisons of different processes, machines, and tools, 
as well as experiments trading off various factors such as 
material cost, cutting speed, tool wear, and mean time to 
failure. 

B. Types of Data 
Separately from the preceding domain categories, there 

are different types of data characterized, not by the 
application domain, but by their type. Each has significant 
concerns. 

1) Key Performance Indicators 

KPIs are a type of metric designed to guide decision-
making, for sustainability or profitability for example. 
However, use of common KPIs can still not be taken for 
granted. For example, in a survey of manufacturers, 36.8 % 
of respondents did not use KPIs [23]. Reasons included 
“Unsure of what data to measure” (20.7 %) and “Not 
convinced that measuring KPIs adds value” (24.1 %). Even 
KPIs that intuitively sound useful may not be regarded so by 
many people. For example, less than half of respondents who 
use KPIs in the Schenck survey agreed that it was worth such 
straightforward metrics for equipment utilization (42.6 %) 
and downtime (40.4 %).  

ISO 22400 defines standard key performance indicators 
for manufacturing operations management [24]. While we do 
not discourage collection and use of other KPIs and the 
merits of existing and new KPIs are a regular source of 
debate, we encourage the use of standard methods for KPIs 
collection where they exist. 

2) Human Interaction 
While minimizing manual activity is desirable due to 

tradeoffs of cost, consistency, and reliability, some human 
activity will remain. Unfortunately, each type of data 
collected about human activity comes with different and 
potentially expensive tradeoffs. For example, keyboard 
interaction is easily and inexpensively tracked, even to 
individual keystroke values and timing. In contrast, 
observing what a human is looking at, while trackable, is 
expensive. Eye movements can be recorded, screen videos 
can be saved, and the two can be synchronized. Other types 
of interactions are even more expensive ranging from short-
term indicators (e.g., muscle effort, joint stress) to long-term 
indicators (e.g., endurance, concentration).  

The justification of collecting such data may seem 
difficult for the very reason that such interactions are 
necessary in the first place. Namely, the interaction cannot 
be inexpensively and reliably automated in the first place. 
Whether it is human judgment, human vision, or some other 
type of interaction that is seemingly simple for humans but 
hard for machines, these types of issues make these data 
among the least easy to deal with.  

At the same time, data from observing human interaction 
is intriguing. While high-level judgments may remain 
difficult, they have a significant potential to lead to more 
efficient human activity in the workplace. However, such 
observations are remarkably easy to overlook and likely to 
be misunderstood without data.  

3) Data Models 
Much of our focus on data collection has been on low-

level data collected directly from sensors. However, 
understanding these data can be difficult or impossible 
without the underlying models on which the data are based. 

Models are descriptions of designs, activities, and 
algorithms. They exist at every level of an enterprise – from 
supply chain to machine tool. Such models include a variety 
of information including requirements, architecture 
descriptions, interaction diagrams, and physical 
specifications. Use of models have several problems: 

• Models may contain proprietary information which 
is stripped before distribution. 



• Models may require integration with other models or 
it may be unclear how they relate to the data. 

• Models may be more aspirational than accurate. 
Implementers may have deviated from the models. 

4) High-level Data and Metadata 
We have already mentioned metadata in several contexts 

earlier in the paper such as describing the format, timing, and 
source of data. However, metadata is a more general issue 
that deserves additional elaboration. As an example, many 
axioms or assumptions are metadata that should be 
documented. 

Consider an investigation into energy use. While energy 
use may be readily available from power meters and fully 
recorded, hidden assumptions may not be. The price of 
energy may already have been considered when the 
enterprise was designed. A high-cost energy location will 
naturally have minimized the use of energy while a low-cost 
energy location will lead to data that is biased toward 
profligate energy use. Such assumptions may not make sense 
for researchers, depending on the focus of the research. As 
another example, consider a factory in a location where 
energy cost is time-sensitive. Time-sensitive energy pricing 
may come about from the power company or in-house 
sources such as solar power availability, which is only 
available during the day. A failure to record this metadata 
will lead to energy-use data that may look quite odd. 

Other metadata omissions can be equally problematic. 
For example, consider a machine tool shared across 
production lines or one that is older and needs more frequent 
maintenance. These types of factors will influence the data. 
However, a lack of explanation will leave inexplicable 
impacts in the research conclusions. Similarly, data may 
reflect expenses related to machine tools due to requirements 
in the product line that are not evident in the data. Schedules 
(i.e., absences) related to trained personnel availability may 
also perturb data in similar ways. 

5) Simulated Data 
Some projects have addressed a lack of physical data by 

creating simulated sensor data complete with comparisons of 
simulated data to physical data. This is not necessarily easy 
since real-world artifacts will include errors for many 
reasons such as calibration drift or pseudo-random errors. 
These must be modeled (to some degree) for useful data. In 
some cases, simulated data may be a useful substitute. In 
others, simulated data may not be useful. Therefore, 
researchers must take care to appreciate the differences in 
requirements. 

We believe there is a valid use for simulated data and 
encourage development in data analytics. However, such 
data must include appropriate metadata that explains its 
simulated nature and source. This may include assumptions, 
requirements, and source code for the simulated data 
generators. 

IV. DATA REPOSITORIES 
There is strong motivation to create “big data” 

repositories to hold contributions from industry as well as 
academia. Two such repositories exist already. 

• CO2PE! (Cooperative Effort on Process Emissions 
in Manufacturing) is an initiative with a number of 
objectives related to improving manufacturing 
processes. CO2PE! proposes to “develop a 
methodology that allows to provide data in a format 
useful for inclusion in LCI (Life Cycle Inventory) 
databases.” [25] CO2PE! also expects that its 
partners will contribute to LCI data “as required for 
systematic LCA studies, covering the production 
stage...” While more specialized to specific fields 
and problems, the focus of CO2PE! is a strong 
indicator supporting the focus of our own work 
described in this paper. 

• ecoInvent is an LCI database representing “human 
activity and its exchanges with the environment and 
with other human activities.” [26] These exchanges 
include energy and other resources. These datasets 
represent the higher levels of data of an enterprise 
and go all the way to national tracking of resources. 
Some of the factors we described earlier are 
addressed by ecoInvent such as formats and 
uncertainty. ecoInvent also addresses other factors 
such as revision control. 

Since these are specialized repositories, it is likely that 
there will be additional repositories created. We would like 
to see repositories that have the following attributes: 

• Automated. We anticipate contributions will occur 
by connecting to a website and uploading data along 
with metadata that describes scenario information. In 
the case of direct access, information must also be 
provided along with certain best-effort promises of 
availability and any bandwidth restrictions (such as 
“no more than 1 GB/day without prior approval”). 
Researcher access can occur by manual or automatic 
download using Webservices. 

• Secure. Digital signatures must be used to ensure 
authorship and to ensure changes are trackable. 

• “Lightly” curated. Given the ever-increasing span 
and complexity of scenarios and rapidly evolving 
technology, it may be difficult to judge the value of 
most submissions. Submissions that attract little 
interest initially may turn out to be of significant 
value at a later time. Except for the space consumed, 
submissions that are of no interest have no impact on 
others. 

• Generated data. While we seek contributions of real 
data, simulated data are also useful. Ideally, 
simulated data will include sources to the data 
generator with generation parameters so that 
distribution size can be minimized and further 
experimentation is possible while allowing research 
conclusions to cite the parameters for the particular 
generation run. 

One particularly desirable type of repository is for 
challenge-problem data. Challenge problems are problems 
widely recognized as fundamental or critical to advancing 
research in their fields. In the field of data analytics in smart 
manufacturing, there are many issues associated with these 



challenge problems including their description, availability, 
and relevance. Most importantly, challenge problems require 
data. 

Challenge-problem data serve two purposes. First, such 
data are necessary for researchers who would otherwise have 
access to insufficient real data. Not all researchers have 
direct access to machine tools or work cells, for example. 
Second, having data common to all researchers addressing 
these problems allows their results to be evaluated and 
compared more easily. Without common data, trying to 
compare results is akin to comparing apples and oranges. It 
becomes impossible to do meaningful comparisons. 

V. CONCLUSION 
In this paper, we have described issues that presently 

hinder access to and usability of data. We have made some 
recommendations and observations with the intent of 
spurring more data contributions and providing guidance to 
make them more useful. In our own data analytics research 
using real manufacturing data, we have encountered many of 
these issues. Sometimes significant time is required for 
resolving problems. In the worst case, these data may not be 
usable at all. We hope that our experiences allow researchers 
to avoid these problems in the future.  

We have also described the need for data for challenge 
problems. A better understanding of these needs, 
recommendations, and requirements may improve the ability 
of researchers and other practitioners to better study and 
more rapidly deploy data analytics in manufacturing. Lastly, 
we have described existing repositories and suggestions for 
future “big data” repositories for data analytics. We believe 
that all of these ideas will improve the opportunities for data 
analytics researchers and contributors. 
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